
Survey on Multiclass Classification Methods
Neha Mehra and Surendra Gupta

Computer Engineering Department

Shri Govindram Seksaria Institute of Technology and Science
Indore, India

Abstract-Supervised learning is based on the target value or the desired
outputs. Various successful techniques have been proposed to solve the
problem in the binary classification case. The multiclass classification
case is more delicate one. In this short survey we investigate the various
techniques for solving the multiclass classification problem. Various
authors and research modified the multiclass classification approach
such as one against one, one against all and Directed Acyclic Graph
(DAG) which creates many binary classifiers and combines their results
to determine the class label of a test pixel. They also describe the various
extensible methods that are extended from binary class to solve the
multiclass problem and also explain the method in which the classes are
arranged into a tree.
Keywords: Multiclass classification, SVM, Neural Network, Hierarchical
classification, KNN

INTRODUCTION
In machine learning, the problem of classification is
encountered in various areas, such as medicine to identify a
disease of a patient, or industry to decide whether a defect
has appeared or not, or to decide the temperature is low,
middle or high. In these areas, multiclass classification is a
major problem. Each instance in the learning set belongs to
a number of set of previously defined labels in multiclass
classification. The aim of supervised classification methods
is to construct a learning model from a labeled training data
set to be able to classify new objects with unknown labels.
Assume that a training data set is given of the form (xi, yi),
where xi € Rn is a vector of attributes of the ith object and yi

is the ith class label. We aim at finding a learning model H
such that H(xi) = yi for new unlabeled objects. The problem
is simply formulated to classify the samples into two
classes +1 or -1. Several algorithms have been proposed to
solve the problem in two class case and some algorithms
are extended to solve the problem of multiclass case.
There are three groups of methods to solve the multiclass
classification problems. The first group includes methods
which can be extended from binary case. The second group
includes methods for converting the multiclass
classification problem into several binary classification
problems. Third group is described by hierarchical
classification methods.

EXTENSIBLE METHODS
The multiclass classification problem can be solved by
extending the binary classification problem. These include
neural networks, decision trees, k-Nearest Neighbor, Naive
Bayes, and Support Vector Machines.
A. Neural Networks
Neural network learning is a type of supervised learning,
meaning that we provide the network with example inputs
and the correct answer for that input. Neural networks are
commonly used for classification problems and regression
problems. A multilayer feedforward neural network
consists of a layer of input units, one or more layers of
hidden units, and one output layer of units [1]. The network

is not allowed to have cycles from later layers back to
earlier layers, hence the name “feed-forward".

Fig 1: Typical Feed Forward Network composed of 3

layers

Determining the number of hidden units is a bit of an art
form, and requires experimentation to determine the best
number of hidden units. Too few hidden units will prevent
the network from being able to learn the required function,
because it will have too few degrees of freedom. Too many
hidden units may cause the network to tend to overfit the
training data, thus reducing generalization accuracy. In
many applications, some minimum number of hidden units
is needed to learn the target function accurately, but extra
hidden units above this number do not significantly affect
the generalization accuracy, as long as cross validation
techniques can be used. Too many hidden units can also
significantly increase the training time.
In multi-layer feed forward neural networks, the sigmoid
activation function, denoted by g(x) is normally used.
(ݔ)	݃ = 	 ଵଵାୣ୶୮	(ି௫) (1)

Instead of just having one neuron in the output layer, with
binary output, we could have N binary neurons. The output
codeword corresponding to each class can be chosen as
follows:
1. One-per-class coding: Each output neuron is designated

the task of identifying a given class [14]. The output
code for that class should be 1 at this neuron and 0 for
the others. Therefore, we will need N = K neurons in the
output layer, where K is the number of classes. The
output code with four class problem is shown in
Table 1.

2. Distributed output coding: Each class is assigned a
unique binary codeword from 0 to 2N − 1, where N is
the number of output neurons [14]. When testing an

Neha Mehra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 572 - 576

www.ijcsit.com 572

unknown example, the output codeword is compared to
the codewords for the K classes, and the nearest
codeword, according to some distance measure, is
considered the winning class. Usually the Hamming
distance is used in that case, which is the number of
different bits between the two codewords. The output
code with four class problem using N=5 is shown in
Table 2.

Table 1: One per-class Coding

Class 1 1000
Class 2 0100
Class 3 0010
Class 4 0001

Table 2: Distributed Output Coding

Class 1 00000
Class 2 00111
Class 3 11001
Class 4 11110

B. Decision Trees
Decision trees are a powerful classification technique. Two
widely known algorithms for building decision trees are
Classification and Regression Trees [2]. The decision tree
consists of nodes that form a rooted tree, meaning it is a
directed tree with a node called “root” that has no incoming
edges. All other nodes have exactly one incoming edge. A
node with outgoing edges is called an internal or test node.
All other nodes are called leaves (also known as terminal or
decision nodes). In a decision tree, each internal node splits
the instance space into two or more sub-spaces according to
a certain discrete function of the input attributes values.
The goal of decision tree is to create a model that predicts
the value of a target variable based on several input
variables. The tree tries to infer a split of the training data
based on the values of the available features to produce a
good generalization. The split at each node is based on the
feature that gives the maximum information gain. Each leaf
node corresponds to a class label. A new example is
classified by following a path from the root node to a leaf
node, where at each node a test is performed on some
feature of that example. The leaf node reached is
considered the class label for that example. The algorithm
can naturally handle binary or multiclass classification
problems. The leaf nodes can refer to either of the K classes
concerned.
To clearly understand the decision tree consider an
example. Imagine you only ever do things at the weekend:
go shopping, watch a movie, play tennis or just stay in.
What you do depends on three things: the weather (windy,
rainy or sunny); how much money you have (rich or poor)
and whether your parents are visiting. You say to yourself,
if my parents are visiting, we’ll go to the cinema. If they
are not visiting and it’s sunny, then I’ll play tennis, but if
it’s windy, and I’m rich, then I’ll go to shopping. If they are
not visiting and it’s windy and I’m poor then I will go to
the cinema. If they are not visiting, then I’ll stay in.
To remember all this, you draw a flowchart (decision tree)
which will enable you to read off your decision.

Fig 2: Typical Decision Tree Example

There are many specific decision tree algorithms some are
ID3, FID3, C4.5, MARS, CART, and CHAID.
Some advantages of decision tree are, they are
computationally simply to understand and interpret, can
handle both numerical and categorical data and performs
well on large data in a short time.
Some disadvantages are that it can create over-complex
trees that do not generalize the data well.
C. K-Nearest Neighbor (kNN)
K-nearest neighbor (kNN) classification, finds a group of k
objects in the training set that are closest to the test object,
and bases the assignment of a label on the predominance of
a particular class in this neighborhood [3]. There are three
key elements of this approach: a set of labeled objects, e.g.,
a set of stored records, a distance or similarity metric to
compute distance between objects, and the value of k, the
number of nearest neighbors. To classify an unlabeled
object, the distance of this object to the labeled objects is
computed, its k-nearest neighbors are identified, and the
class labels of these nearest neighbors are then used to
determine the class label of the object. kNN is a type of
instance-based learning or lazy learning, where the function
is only approximated locally and all computation is
deferred until classification.
kNN is called lazy learning which means that it does not
use the training data points to do any generalization. In
other words, there is no explicit training phase or it is very
minimal. This means the training phase is pretty fast. Lack
of generalization means that kNN keeps all the training
data. More exactly, all the training data is needed during
the testing phase.

Fig 3: Typical Example of kNN Classifer

Some assumptions of kNN classifer are that, kNN assumes
all data is in a feature space.
Some advantages of kNN classifier is that, it is simple in
implementation, it is nearly optimal in the large sample
limit. Some disadvantages are that, it requires large storage
and highly susceptible to the curse of dimensionality

Neha Mehra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 572 - 576

www.ijcsit.com 573

D. Naïve Bayes Classifer
The Naive Bayes algorithm is a classification algorithm
based on the Bayes rule. A naive bayes classifier is a
simple probabilistic classifier based on applying Bayes'
theorem with strong (naive) independence assumptions [4].
It assumes that the presence (or absence) of a particular
feature of a class is unrelated to the presence (or absence)
of any other feature, given the class variable. It is
particularly suited when the dimensionality of the inputs is
high. Parameter estimation for naive Bayes models uses the
method of maximum likelihood. An advantage of the naive
Bayes classifier is that it only requires a small amount of
training data to estimate the parameters (means and
variances of the variables) necessary for classification.
Given a problem with K classes {C1, . . . ,CK} with so-
called prior probabilities P(C1), . . . , P(CK), we can assign
the class label c to an unknown example with features x =
(x1, . . . , xN) such that c = argmaxcP(C = c||x1, . . . , xN), that
is choose the class with the maximum a posterior
probability given the observed data.
ܥ)ܲ = ଵݔ||ܿ (ேݔ	… = ௉(஼ୀ௖)௉(௫భ……	௫ಿ||஼ୀ௖)௉(௫భ……	௫ಿ) (2)

E. Support Vector machine
SVM are a group of supervised learning methods that can
be used for classification. It is used for the purpose of
classification and regression, can analyze data and
recognize patterns. It does not have prior knowledge of the
problem but learns about it during training. The major
advantage of SVM is its generalization capability [5][6].
This feature makes it better than most of the other models
present in this field .It takes set of inputs data and predicts,
for each given input, which two possible classes forms the
input.
There are two types of problems linearly separable and
non-linearly separable problem. Linearly separable problem
can be easily separated by a straight hyperplane but non-
linearly separable problem cannot. To solve non-linearly
separable problem data are transformed from input space to
higher dimensional feature space because in the higher
dimensional feature space it is easier to separate the input
data
A kernel function ∅: ܺ	 → is a mapping from the input ܨ
space to the feature space			ܨ, where patterns are more
easily separated, and ்ݓ߶(ݔ௜) + 	ܾ = 0 is the hyperplane
to be derived with 		ݓ	(perpendicular to the separating
hyperplane), and ܾ being weight vector and offset,
respectively. The maximum margin of the separating
hyperplane is 2/||w||.
The choices of kernel function are
1. Linear kernel 	݇(ݔ, (ݕ = .	ݔ ݕ + ܿ (3)
2. Polynomial Kernel 	݇(ݔ, (ݕ = ்ݔܽ) + 	ܿ)ௗ (4)
3. Gaussian Kernel Function ݇(ݔ, (ݕ = ݌ݔ݁ − ݔ‖ − ଶߪଶ2‖ݕ 																																																(5)			
4. Sigmoid kernel: 					݇൫ݔ௜, ௝൯ݔ = ௜்ݔ	ߛℎ൫݊ܽݐ 	௝ݔ	 + (6)																																				൯ݎ	

Fig 4: SVM with maximum margin 2/||w||

There are some patterns which are misclassified as and they
should be penalized. Therefore, slack variables are
introduced to account for misclassifications. The objective
function and constraints of the classification problem can
be formulated as: 	min௪,௕ ଵଶݓ்ݓ + 	ܥ	 ∑ ଵ	ୀ	௜௟௜ߦ .ݏ	 (7) 	 .ݐ (௜ݔ)߶்ݓ)	௜ݕ + 	ܾ) 	≥ 1 ,	௜ߦ	− ௜ߦ ≥ 0		 ݅ = 1,2. . . , ݈,
Where l is the number of training patterns, C is a
parameter, which gives a tradeoff between maximum
margin and classification error, and ݕ௜, being +1 or -1, is
the target label of pattern ݔ௜.

II DECOMPOSING INTO BINARY CLASSIFICATION
The most popular approach used in multiclass classification
is to decompose the problem into multiple two-class
classification problems and then solve those using efficient
binary classifiers [7][8][13]. The most successful and
widely used binary classifiers are the support vector
machine. There are a number of different approaches to
decompose a k-class classification problem into two-class
problems.
A. One against All Approach (OVA)
Suppose the dataset is to be classified into K classes.
Therefore, K binary SVM classifiers may be created where
each classifier is trained to distinguish one class from the
remaining K-1 classes. For this approach, we require N = K
binary classifiers, where the kth classifier is trained with
positive examples belonging to class k and negative
examples belonging to the other K − 1 classes.
During the testing, samples are classified by finding margin
from the linear separating hyperplane. The final output is
the class that corresponds to the SVM with the largest
margin. However, if the outputs corresponding to two or
more classes are very close to each other, those points are
labeled as unclassified.
This multiclass method has an advantage that the number
of binary classifiers to construct equals the number of
classes. However, there are some drawbacks. First, during
the training phase, the memory requirement is very high
and amounts to at the square of the total number of training
samples. This may cause problems for large training data
sets and may lead to computer memory problems. Second,
suppose there are K classes and each has an equal number
of training samples. During the training phase, the ratio of
training samples of one class to rest of the classes will be 1:

Neha Mehra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 572 - 576

www.ijcsit.com 574

(K −1). This ratio, therefore, shows that training sample
sizes will be unbalanced.
Because of these limitations, the one against one approach
of multiclass classification has been proposed.

B. One against One Approach (OAO)
In this method, SVM classifiers for all possible pairs of
classes are created. Therefore, for K classes, there will be
binary classifiers. The output from each classifier in the
form of a class label is obtained. The class label that occur
the most is assigned to that point in the samples. The
number of classifiers created by this method is generally
much larger than the previous method. However, the
number of training data vectors required for each classifier
is much smaller. This method constructs k (k-1)/2
classifiers where each one is trained on data from two
classes. For training data from the ith and the jth classes, we
solve the following binary classification problem. When
testing a new example, a voting is performed among the
classifiers and the class with the maximum number of votes
wins.
The main disadvantage of this method is the increase in the
number of classifiers as the number of class increases but
its gives better results than the one against all approach.

C. Directed Acyclic Graph SVM (DAGSVM)
This method is based on the Decision Directed Acyclic
Graph (DDAG) structure that forms a tree-like structure.
Its training phase is same as one against one approach. For
k class classification problem, the number of binary
classifiers is equal to k (k-1)/2 and each classifier is trained
to classify two classes of interest. Each classifier is treated
as a node in the graph structure. Nodes in DDAG are
organized in a triangle with the single root node at the top
and increasing thereafter in an increment of one in each
layer until the last layer that will have k nodes.
The DDAG evaluates an input vector x starting at the root
node and moves to the next layer based on the output
values. For instance, it exits to the left edge if the output
from the binary classifier is negative, and it exits to the
right edge if the output from the binary classifier is
positive. The binary classifier of the next node is then
evaluated. The path followed is called the evaluation path.
The DDAG method basically eliminates one class out from
a list. Initially the list contains all classes. Each node
evaluates the first class against the last class in the list. For
example, the root node evaluates class 1 against class k. If
the evaluation results in one class out of two classes, the
other is eliminated from the list. The process then tests the
first and the last class in the new list. It is terminated when
only one class remains in the list. The class label associated
with the input data will be the class label of the node in the
final layer of the evaluation path or the class remained in
the list.
An advantage of using a DAG is that some analysis of
generalization can be established. There are still no similar
theoretical results for one against the rest and one against
one method yet. In addition, its testing time is less than the
one against one method.

D. Error Correcting Output Coding
The concept of Error Correcting Output Coding (ECOC)
based multi-class method is to apply binary (two-class)
classifiers to solve the multi-class classification problems
[9]. This approach works by converting K class
classification problem into a large number L of 2-class
classification problems. ECOC assigns a unique code word
to a class instead of assigning each class a label. A (L, M,
d) error correcting code is a L bit long, having C unique
code words with a Hamming distance of d. The hamming
distance between two code words is the number of bit
positions in which both differs. In a classification problem
K is the number of classes and L is a number decided by the
method used to generate error-correcting codes.

Table 3 shows an example for K = 5 classes and N = 7 bit

codewords.
Table 3: ECOC Example

 f1 f2 f3 f4 f5 f6 f7
Class 1 0 0 0 0 0 0 0
Class 2 0 1 1 0 0 1 1
Class 3 0 1 1 1 1 0 0
Class 4 1 0 1 1 0 1 0
Class 5 1 1 0 1 0 0 1

Each class is given a row of the matrix. Each column is
used to train a distinct binary classifier. When testing an
unseen example, the output codeword from the N
classifiers is compared to the given K codewords, and the
one with the minimum hamming distance is considered the
class label for that example.

III HIERARCHICAL CLASSIFICATION
In this method the classes are arranged into a tree. The tree
is created such that the classes at each parent node are
divided into a number of clusters, one for each child node.
The process continues until the leaf nodes contain only a
single class. At each node of the tree, a simple classifier,
usually a binary classifier makes the discrimination
between the different child class clusters [10]. Following a
path from the root node to a leaf node leads to a
classification of a new pattern. Figure 4 shows the example
of 5-class problem.

Fig 5: Example of 5-class problem

Kumar et al. [11] proposed a method called Binary
Hierarchical Classifier (BHS). The method uses K−1 binary
classifiers to classify a K-class problem. The binary

Neha Mehra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 572 - 576

www.ijcsit.com 575

classifiers are arranged in a binary tree with K leaf nodes,
each corresponding to a given class.
Vural and Dy [12] work on a similar approach of building a
binary tree of K −1 binary classifiers, which they call
Divide-By-2 (DB2). The split of classes into two clusters at
each step is performed by either using k-means algorithm
for clustering the class means into two groups or by using
the classes grand mean as a threshold and putting classes
with means smaller to the grand mean in one cluster and
those with larger mean into the other.

IV EXPERIMENTS AND RESULTS
All the classification methods have been tested on various
dataset such as iris, wine, glass and vowel. The result in
terms of accuracy on various dataset is shown in table no.4.

Table 4: Experimental Results

 Iris Wine Glass Vowel
MLFFN 96.825% 98.88% 70.09% 89.8%
Decision Tree 94% 52.80% 70.7% 81.1
kNN 99.33% 98.84% 70.90% 98.08%
Naïve Bayes
Classifer

98.66% 99.42% 63.99% 77.39%

SVM 98% 100% 71.96% 95.64%
OVA 96.66% 98.87% 71.96% 98.485%
OAO 97.33% 99.43% 71.49% 99.053%
DAGSVM 96.66% 98.87% 73.83% 98.674%

Experimentations had performed on hierarchical
classification in which vowel and segment dataset is used
and result is shown in table no.5.

Table 5: Experimental result on Hierarchical Classification

 Vowel Segment
Hierarchical Classification 91.42% 92.57%

V CONCLUSION

This survey presented the different approaches employed to
solve the problem of multiclass classification. It explains
how two class classification methods can be extended to
solve multiclass problem and explains how multiclass
problem can be reduced to multiple binary class problem. It
also explains how classes can be arranged in a tree, usually
a binary tree, and how to utilize a number of binary
classifiers at the nodes of the tree till a leaf node is reached.
Depending on the need one of the method can be used for
the classification purpose.
It shows the result that iris dataset gives best result when
we use kNN classifer and SVM classifer. Wine dataset give
best result when SVM, Naïve Bayes and One against all
method is used. Glass dataset gives best result when it is
classified with DAGSVM.

REFERENCES
 [1] Daniel Svozil, Vladimir KvasniEka, JiE Pospichal, Introduction to

multi-layer feed-forward neural networks, Chemometrics and
Intelligent Laboratory Systems 39 (1997) 43-62.

[2] Ravindra Changala, Annapurna Gummadi, G Yedukondalu, UNPG
Raju, Classification by Decision Tree Induction Algorithm to Learn
Decision Trees from the class-Labeled Training Tuples, International
Journal of Advanced Research in Computer Science and Software
Engineering, Volume 2, Issue 4, April 2012.

[3] Yun-lei Cai, Duo Ji ,Dong-feng Cai,A KNN Research Paper
Classification Method Based on Shared Nearest Neighbor, Natural

Language Processing Research Laboratory, Shenyang Institute of
Aeronautical Engineering, Shenyang, China, June 15–18, 2010.

[4] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI
Workshop on Empirical Methods in Artificial Intelligence, 2001.

[5] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine Learning, pages 273–297, 1995.

[6] Tomer Hertz Tomboy, Aharon Bar Hillel and Aharonbh Daphna
Weinshall, “Learning a Kernel Function for Classification with
Small Training Samples,” School of Computer Science and
Engineering, The Center for Neural Computation, The Hebrew
University of Jerusalem, Jerusalem, Israel.

[7] Erin Allwein, Robert Shapire, and Yoram Singer. Reducing
multiclass to binary: A unifying approach for margin classifiers.
Journal of Machine mLearning Research, pages 113–141, 2000.

[8] Chih-Wei Hsu and Chih-Jen Lin, “A Comparison of Methods for
Multiclass Support Vector Machines,” IEEE Transactions on neural
networks vol.13, no. 2, march 2002.

 [9] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems
via error correcting output codes. Journal of Artificial Intelligence
Research, 39:1–38, 1995.

[10] Volkan Vural and Jennifer G. Dy. A hierarchical method for multi-
class support vector machines. In Proceedings of the twenty-first
international conference on Machine learning, pages 105–112, 2004.

 [11] S. Kumar, J. Ghosh, M.M. Crawford, Hierarchical fusion of multiple
classifiers for hyperspectral data analysis, Pattern Analysis&
Applications, 5:210-220, 2002.

 [12] V. Vural, J.G. Dy, A hierarchical method for multi-class support
vector machines. In Proceedings of the Twenty-First International
Conference on Machine Learning, 105-112, 2004.

 [13] Mahesh Pal, Multiclass Approaches for Support Vector Machine
Based Land Cove Classification. Lecturer, Department of Civil
engineering National Institute of Technology Kurukshetra, 136119,
Haryana (India), 2008.

 [14] Mohamed Aly, Survey on Multiclass Classification Methods,
Technical Report, Caltech, USA, 2005.

AUTHORS

 Neha Mehra received her Bachelor of Engineering degree in

Computer Science from RGPV University, India in 2010. She is
currently pursuing Master of Engineering in Computer Engineering
from SGSITS, Indore, India. Her research interests include machine
learning.

Surendra Gupta received the Bachelor of Engineering degree in

computer science and engineering from Barkatullah University,
India in 1997 and Master of Engineering degree in computer
engineering from DAVV University, India in 2000. He is currently
working as Assistance Professors in computer engineering
department at SGSITS Indore, India. His interests are in machine
learning and optimization. He is a member of the computer society
of India.

Neha Mehra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 572 - 576

www.ijcsit.com 576

