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Abstract-Supervised learning is based on the target value or the desired 
outputs. Various successful techniques have been proposed to solve the 
problem in the binary classification case. The multiclass classification 
case is more delicate one. In this short survey we investigate the various 
techniques for solving the multiclass classification problem. Various 
authors and research modified the multiclass classification approach 
such as one against one, one against all and Directed Acyclic Graph 
(DAG) which creates many binary classifiers and combines their results 
to determine the class label of a test pixel. They also describe the various 
extensible methods that are extended from binary class to solve the 
multiclass problem and also explain the method in which the classes are 
arranged into a tree. 
Keywords: Multiclass classification, SVM, Neural Network, Hierarchical 
classification, KNN 
 

INTRODUCTION 
In machine learning, the problem of classification is 
encountered in various areas, such as medicine to identify a 
disease of a patient, or industry to decide whether a defect 
has appeared or not, or to decide the temperature is low, 
middle or high. In these areas, multiclass classification is a 
major problem. Each instance in the learning set belongs to 
a number of set of previously defined labels in multiclass 
classification. The aim of supervised classification methods 
is to construct a learning model from a labeled training data 
set to be able to classify new objects with unknown labels. 
Assume that a training data set is given of the form (xi, yi), 
where xi € Rn is a vector of attributes of the ith object and yi 

is the ith class label. We aim at finding a learning model H 
such that H(xi) = yi for new unlabeled objects. The problem 
is simply formulated to classify the samples into two 
classes +1 or -1. Several algorithms have been proposed to 
solve the problem in two class case and some algorithms 
are extended to solve the problem of multiclass case.  
There are three groups of methods to solve the multiclass 
classification problems. The first group includes methods 
which can be extended from binary case. The second group 
includes methods for converting the multiclass 
classification problem into several binary classification 
problems. Third group is described by hierarchical 
classification methods. 
 

EXTENSIBLE METHODS 
The multiclass classification problem can be solved by 
extending the binary classification problem. These include 
neural networks, decision trees, k-Nearest Neighbor, Naive 
Bayes, and Support Vector Machines.            
A. Neural Networks 
Neural network learning is a type of supervised learning, 
meaning that we provide the network with example inputs 
and the correct answer for that input. Neural networks are 
commonly used for classification problems and regression 
problems. A multilayer feedforward neural network 
consists of a layer of input units, one or more layers of 
hidden units, and one output layer of units [1]. The network 

is not allowed to have cycles from later layers back to 
earlier layers, hence the name “feed-forward". 
 

 
Fig 1: Typical Feed Forward Network composed of 3 

layers 
 

Determining the number of hidden units is a bit of an art 
form, and requires experimentation to determine the best 
number of hidden units. Too few hidden units will prevent 
the network from being able to learn the required function, 
because it will have too few degrees of freedom. Too many 
hidden units may cause the network to tend to overfit the 
training data, thus reducing generalization accuracy. In 
many applications, some minimum number of hidden units 
is needed to learn the target function accurately, but extra 
hidden units above this number do not significantly affect 
the generalization accuracy, as long as cross validation 
techniques can be used. Too many hidden units can also 
significantly increase the training time. 
In multi-layer feed forward neural networks, the sigmoid 
activation function, denoted by g(x) is normally used. 
(ݔ)	݃  = 	 ଵଵାୣ୶୮	(ି௫)                                         (1) 

Instead of just having one neuron in the output layer, with 
binary output, we could have N binary neurons. The output 
codeword corresponding to each class can be chosen as 
follows: 
1. One-per-class coding: Each output neuron is designated 

the task of identifying a given class [14]. The output 
code for that class should be 1 at this neuron and 0 for 
the others. Therefore, we will need N = K neurons in the 
output layer, where K is the number of classes. The 
output code with four class problem is shown in  
Table 1. 

2. Distributed output coding: Each class is assigned a 
unique binary codeword from 0 to 2N − 1, where N is 
the number of output neurons [14]. When testing an 
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unknown example, the output codeword is compared to 
the codewords for the K classes, and the nearest 
codeword, according to some distance measure, is 
considered the winning class. Usually the Hamming 
distance is used in that case, which is the number of 
different bits between the two codewords. The output 
code with four class problem using N=5 is shown in 
Table 2.  

 
Table 1: One per-class Coding 

Class 1 1000 
Class 2 0100 
Class 3 0010 
Class 4 0001 

 
Table 2: Distributed Output Coding 

Class 1 00000 
Class 2 00111 
Class 3 11001 
Class 4 11110 

 
B. Decision Trees 
Decision trees are a powerful classification technique. Two 
widely known algorithms for building decision trees are 
Classification and Regression Trees [2]. The decision tree 
consists of nodes that form a rooted tree, meaning it is a 
directed tree with a node called “root” that has no incoming 
edges. All other nodes have exactly one incoming edge. A 
node with outgoing edges is called an internal or test node. 
All other nodes are called leaves (also known as terminal or 
decision nodes). In a decision tree, each internal node splits 
the instance space into two or more sub-spaces according to 
a certain discrete function of the input attributes values.  
The goal of decision tree is to create a model that predicts 
the value of a target variable based on several input 
variables. The tree tries to infer a split of the training data 
based on the values of the available features to produce a 
good generalization. The split at each node is based on the 
feature that gives the maximum information gain. Each leaf 
node corresponds to a class label. A new example is 
classified by following a path from the root node to a leaf 
node, where at each node a test is performed on some 
feature of that example. The leaf node reached is 
considered the class label for that example. The algorithm 
can naturally handle binary or multiclass classification 
problems. The leaf nodes can refer to either of the K classes 
concerned. 
To clearly understand the decision tree consider an 
example. Imagine you only ever do things at the weekend: 
go shopping, watch a movie, play tennis or just stay in. 
What you do depends on three things: the weather (windy, 
rainy or sunny); how much money you have (rich or poor) 
and whether your parents are visiting. You say to yourself, 
if my parents are visiting, we’ll go to the cinema. If they 
are not visiting and it’s sunny, then I’ll play tennis, but if 
it’s windy, and I’m rich, then I’ll go to shopping. If they are 
not visiting and it’s windy and I’m poor then I will go to 
the cinema. If they are not visiting, then I’ll stay in.  
To remember all this, you draw a flowchart (decision tree) 
which will enable you to read off your decision. 
 

 
Fig 2: Typical Decision Tree Example 

 
There are many specific decision tree algorithms some are 
ID3, FID3, C4.5, MARS, CART, and CHAID. 
Some advantages of decision tree are, they are 
computationally simply to understand and interpret, can 
handle both numerical and categorical data and performs 
well on large data in a short time. 
Some disadvantages are that it can create over-complex 
trees that do not generalize the data well. 
C.  K-Nearest Neighbor (kNN) 
K-nearest neighbor (kNN) classification, finds a group of k 
objects in the training set that are closest to the test object, 
and bases the assignment of a label on the predominance of 
a particular class in this neighborhood [3]. There are three 
key elements of this approach: a set of labeled objects, e.g., 
a set of stored records, a distance or similarity metric to 
compute distance between objects, and the value of k, the 
number of nearest neighbors. To classify an unlabeled 
object, the distance of this object to the labeled objects is 
computed, its k-nearest neighbors are identified, and the 
class labels of these nearest neighbors are then used to 
determine the class label of the object. kNN is a type of 
instance-based learning or lazy learning, where the function 
is only approximated locally and all computation is 
deferred until classification. 
kNN is called lazy learning which means that it does not 
use the training data points to do any generalization. In 
other words, there is no explicit training phase or it is very 
minimal. This means the training phase is pretty fast. Lack 
of generalization means that kNN keeps all the training 
data. More exactly, all the training data is needed during 
the testing phase.  

 
Fig 3: Typical Example of kNN Classifer 

Some assumptions of kNN classifer are that, kNN assumes 
all data is in a feature space. 
Some advantages of kNN classifier is that, it is simple in 
implementation, it is nearly optimal in the large sample 
limit. Some disadvantages are that, it requires large storage 
and highly susceptible to the curse of dimensionality 
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D. Naïve Bayes Classifer 
The Naive Bayes algorithm is a classification algorithm 
based on the Bayes rule.  A naive bayes classifier is a 
simple probabilistic classifier based on applying Bayes' 
theorem with strong (naive) independence assumptions [4]. 
It assumes that the presence (or absence) of a particular 
feature of a class is unrelated to the presence (or absence) 
of any other feature, given the class variable. It is 
particularly suited when the dimensionality of the inputs is 
high. Parameter estimation for naive Bayes models uses the 
method of maximum likelihood. An advantage of the naive 
Bayes classifier is that it only requires a small amount of 
training data to estimate the parameters (means and 
variances of the variables) necessary for classification. 
Given a problem with K classes {C1, . . . ,CK} with so-
called prior probabilities P(C1), . . . , P(CK), we can assign 
the class label c to an unknown example with features x = 
(x1, . . . , xN) such that c = argmaxcP(C = c||x1, . . . , xN), that 
is choose the class with the maximum a posterior 
probability given the observed data. 
ܥ)ܲ  = ଵݔ||ܿ (ேݔ	… = ௉(஼ୀ௖)௉(	௫భ……	௫ಿ||஼ୀ௖)௉(	௫భ……	௫ಿ)        (2)       

 
E. Support Vector machine 
SVM are a group of supervised learning methods that can 
be used for classification. It is used for the purpose of 
classification and regression, can analyze data and 
recognize patterns. It does not have prior knowledge of the 
problem but learns about it during training. The major 
advantage of SVM is its generalization capability [5][6]. 
This feature makes it better than most of the other models 
present in this field .It takes set of inputs data and predicts, 
for each given input, which two possible classes forms the 
input.  
There are two types of problems linearly separable and 
non-linearly separable problem. Linearly separable problem 
can be easily separated by a straight hyperplane but non-
linearly separable problem cannot. To solve non-linearly 
separable problem data are transformed from input space to 
higher dimensional feature space because in the higher 
dimensional feature space it is easier to separate the input 
data  
A kernel function ∅: ܺ	 →  is a mapping from the input ܨ
space to the feature space			ܨ, where patterns are more 
easily separated, and ்ݓ߶(ݔ௜) + 	ܾ = 0 is the hyperplane 
to be derived with 		ݓ	(perpendicular to the separating 
hyperplane), and ܾ being weight vector and offset, 
respectively. The maximum margin of the separating 
hyperplane is 2/||w||. 
The choices of kernel function are 
1. Linear kernel 	݇(ݔ, (ݕ = .	ݔ ݕ + ܿ                                                         (3) 
2. Polynomial Kernel 	݇(ݔ, (ݕ = ்ݔܽ) + 	ܿ)ௗ                                                   (4)       
3. Gaussian Kernel Function  ݇(ݔ, (ݕ = ݌ݔ݁ − ݔ‖ − ଶߪଶ2‖ݕ 																																																(5)			
4. Sigmoid kernel:  					݇൫ݔ௜, ௝൯ݔ = ௜்ݔ	ߛℎ൫݊ܽݐ 	௝ݔ	 +  (6)																																				൯ݎ	
 

 
Fig 4: SVM with maximum margin 2/||w|| 

 
There are some patterns which are misclassified as and they 
should be penalized. Therefore, slack variables are 
introduced to account for misclassifications. The objective 
function and constraints of the classification problem can 
be formulated as: 	min௪,௕ ଵଶݓ்ݓ + 	ܥ	 ∑ ଵ	ୀ	௜௟௜ߦ .ݏ	 (7)                                          	 .ݐ (௜ݔ)߶்ݓ)	௜ݕ + 	ܾ) 	≥ 1 ,	௜ߦ	− ௜ߦ ≥ 0		 ݅ = 1,2. . . , ݈,   
Where l is the number of training patterns, C is a 
parameter, which gives a tradeoff between maximum 
margin and classification error, and ݕ௜, being +1 or -1, is 
the target label of pattern ݔ௜. 
 

II DECOMPOSING INTO BINARY CLASSIFICATION 
The most popular approach used in multiclass classification 
is to decompose the problem into multiple two-class 
classification problems and then solve those using efficient 
binary classifiers [7][8][13]. The most successful and 
widely used binary classifiers are the support vector 
machine. There are a number of different approaches to 
decompose a k-class classification problem into two-class 
problems. 
A. One against All Approach (OVA) 
Suppose the dataset is to be classified into K classes. 
Therefore, K binary SVM classifiers may be created where 
each classifier is trained to distinguish one class from the 
remaining K-1 classes. For this approach, we require N = K 
binary classifiers, where the kth classifier is trained with 
positive examples belonging to class k and negative 
examples belonging to the other K − 1 classes. 
During the testing, samples are classified by finding margin 
from the linear separating hyperplane. The final output is 
the class that corresponds to the SVM with the largest 
margin. However, if the outputs corresponding to two or 
more classes are very close to each other, those points are 
labeled as unclassified. 
This multiclass method has an advantage that the number 
of binary classifiers to construct equals the number of 
classes. However, there are some drawbacks. First, during 
the training phase, the memory requirement is very high 
and amounts to at the square of the total number of training 
samples. This may cause problems for large training data 
sets and may lead to computer memory problems. Second, 
suppose there are K classes and each has an equal number 
of training samples. During the training phase, the ratio of 
training samples of one class to rest of the classes will be 1: 
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(K −1). This ratio, therefore, shows that training sample 
sizes will be unbalanced. 
Because of these limitations, the one against one approach 
of multiclass classification has been proposed. 
 
B. One against One Approach (OAO) 
In this method, SVM classifiers for all possible pairs of 
classes are created. Therefore, for K classes, there will be 
binary classifiers. The output from each classifier in the 
form of a class label is obtained. The class label that occur 
the most is assigned to that point in the samples. The 
number of classifiers created by this method is generally 
much larger than the previous method. However, the 
number of training data vectors required for each classifier 
is much smaller.  This method constructs k (k-1)/2 
classifiers where each one is trained on data from two 
classes. For training data from the ith and the jth classes, we 
solve the following binary classification problem. When 
testing a new example, a voting is performed among the 
classifiers and the class with the maximum number of votes 
wins. 
The main disadvantage of this method is the increase in the 
number of classifiers as the number of class increases but 
its gives better results than the one against all approach. 
 
C. Directed Acyclic Graph SVM (DAGSVM) 
This method is based on the Decision Directed Acyclic 
Graph (DDAG) structure that forms a tree-like structure. 
Its training phase is same as one against one approach. For 
k class classification problem, the number of binary 
classifiers is equal to k (k-1)/2 and each classifier is trained 
to classify two classes of interest. Each classifier is treated 
as a node in the graph structure. Nodes in DDAG are 
organized in a triangle with the single root node at the top 
and increasing thereafter in an increment of one in each 
layer until the last layer that will have k nodes. 
The DDAG evaluates an input vector x starting at the root 
node and moves to the next layer based on the output 
values. For instance, it exits to the left edge if the output 
from the binary classifier is negative, and it exits to the 
right edge if the output from the binary classifier is 
positive. The binary classifier of the next node is then 
evaluated. The path followed is called the evaluation path. 
The DDAG method basically eliminates one class out from 
a list. Initially the list contains all classes. Each node 
evaluates the first class against the last class in the list. For 
example, the root node evaluates class 1 against class k. If 
the evaluation results in one class out of two classes, the 
other is eliminated from the list. The process then tests the 
first and the last class in the new list. It is terminated when 
only one class remains in the list. The class label associated 
with the input data will be the class label of the node in the 
final layer of the evaluation path or the class remained in 
the list.  
An advantage of using a DAG is that some analysis of 
generalization can be established. There are still no similar 
theoretical results for one against the rest and one against 
one method yet. In addition, its testing time is less than the 
one against one method. 
 
 

D. Error Correcting Output Coding 
The concept of Error Correcting Output Coding (ECOC) 
based multi-class method is to apply binary (two-class) 
classifiers to solve the multi-class classification problems 
[9]. This approach works by converting K class 
classification problem into a large number L of 2-class 
classification problems. ECOC assigns a unique code word 
to a class instead of assigning each class a label. A (L, M, 
d) error correcting code is a L bit long, having C unique 
code words with a Hamming distance of d. The hamming 
distance between two code words is the number of bit 
positions in which both differs. In a classification problem 
K is the number of classes and L is a number decided by the 
method used to generate error-correcting codes. 
 
Table 3 shows an example for K = 5 classes and N = 7 bit 

codewords. 
Table 3: ECOC Example 

 
 f1 f2 f3 f4 f5 f6 f7 
Class 1 0 0 0 0 0 0 0 
Class 2 0 1 1 0 0 1 1 
Class 3 0 1 1 1 1 0 0 
Class 4 1 0 1 1 0 1 0 
Class 5 1 1 0 1 0 0 1 

 
Each class is given a row of the matrix. Each column is 
used to train a distinct binary classifier. When testing an 
unseen example, the output codeword from the N 
classifiers is compared to the given K codewords, and the 
one with the minimum hamming distance is considered the 
class label for that example. 
 

III HIERARCHICAL CLASSIFICATION 
In this method the classes are arranged into a tree. The tree 
is created such that the classes at each parent node are 
divided into a number of clusters, one for each child node. 
The process continues until the leaf nodes contain only a 
single class. At each node of the tree, a simple classifier, 
usually a binary classifier makes the discrimination 
between the different child class clusters [10]. Following a 
path from the root node to a leaf node leads to a 
classification of a new pattern. Figure 4 shows the example 
of 5-class problem. 

 
Fig 5: Example of 5-class problem 

 
Kumar et al. [11] proposed a method called Binary 
Hierarchical Classifier (BHS). The method uses K−1 binary 
classifiers to classify a K-class problem. The binary 
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classifiers are arranged in a binary tree with K leaf nodes, 
each corresponding to a given class.  
Vural and Dy [12] work on a similar approach of building a 
binary tree of K −1 binary classifiers, which they call 
Divide-By-2 (DB2). The split of classes into two clusters at 
each step is performed by either using k-means algorithm 
for clustering the class means into two groups or by using 
the classes grand mean as a threshold and putting classes 
with means smaller to the grand mean in one cluster and 
those with larger mean into the other.  
 

IV EXPERIMENTS AND RESULTS 
All the classification methods have been tested on various 
dataset such as iris, wine, glass and vowel. The result in 
terms of accuracy on various dataset is shown in table no.4. 

 
Table 4: Experimental Results                                      

 Iris Wine Glass Vowel 
MLFFN 96.825% 98.88% 70.09% 89.8% 
Decision Tree 94% 52.80% 70.7% 81.1 
kNN 99.33% 98.84% 70.90% 98.08% 
Naïve Bayes 
Classifer 

98.66% 99.42% 63.99% 77.39% 

SVM 98% 100% 71.96% 95.64% 
OVA 96.66% 98.87% 71.96% 98.485% 
OAO 97.33% 99.43% 71.49% 99.053% 
DAGSVM 96.66% 98.87% 73.83% 98.674% 

 
Experimentations had performed on hierarchical 
classification in which vowel and segment dataset is used 
and result is shown in table no.5. 
 
Table 5: Experimental result on Hierarchical Classification 

 Vowel Segment 
Hierarchical Classification 91.42% 92.57% 

 
V CONCLUSION 

This survey presented the different approaches employed to 
solve the problem of multiclass classification. It explains 
how two class classification methods can be extended to 
solve multiclass problem and explains how multiclass 
problem can be reduced to multiple binary class problem. It 
also explains how classes can be arranged in a tree, usually 
a binary tree, and how to utilize a number of binary 
classifiers at the nodes of the tree till a leaf node is reached. 
Depending on the need one of the method can be used for 
the classification purpose. 
It shows the result that iris dataset gives best result when 
we use kNN classifer and SVM classifer. Wine dataset give 
best result when SVM, Naïve Bayes and One against all 
method is used. Glass dataset gives best result when it is 
classified with DAGSVM. 
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